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Application Of Definite Integrals:-

1. Area under the Curve:
Consider the curve )(xfy  , then the area under the curve )(xfy  and the ordinate

ax  and bx  and the x axis is given by







bx

ax

ydxA OR 





bx

ax

dxxfA )( .

The area under the curve )( ygx  ,the ordinate cy  and dy  and x axis is







cy

dy

xdyA OR 





cy

dy

dyygA )(

Ex.1 Obtain the area between line xy 8 , x axis and ordinates at 2x and 6x
Soln.:

Area bounded = 




6

2

x

x
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
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
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= 4[32]
=128 Sq.units

Ex.2: Find the area bounded by the curve 3xy  , x axis and the coordinate. 1x , 3x

Soln.: The area bounded by the curve 3xy  , x axis and the coordinate. 1x , 3x

The required area 
3

1

.dxyA


3

1

3.dxx

3

1

13

13 














x
3

1

4

4 












x

 314

4
1

x  44 13
4
1



 181
4
1

  80
4
1
 220unit
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Ex.3: Find the area of the region bounded by the curve 24xy  , x axis and the lines. 1x and

.2x
Soln.: The required area is as shown in Fig.

Required area 
2

1

.dxyA 
2

1

2.4 dxx


2

1

2.4 dxx

2

1

3

3
4














x

    33 12
3
4



 18
3
4
  7

3
4


3
28
 square units.
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Ex.4: Find the area bounded by 24 xxy  , meeting the x axis and the ordinates 1x , .3x

Soln.: here given curve 24 xxy  is parabola meeting x axis at the  0,0 and  0,4 as in the fig.

Required area 





3

1

.
x

x

dxy   
3

1

24 dxxx

3

1

32

32
4














xx

   3322 13
3
1

132 

   127
3
1

192 

 Area
3

26
16 

3
22
 sq.units.
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Ex.5: Find the area enclosed by curve 24 xy  and the lines 0x , 2x , 0y

Soln.: Given curve is the parabola with vertex here  4,0 meeting x axis at  0,2  0,2 as in the

fig.

Required area 





2

0

.
x

x

dxy   
2

1

24 dxx

2

0

3

3
4














x
x

   02
3
1

024 3 

3
8

8 

3
16
 sq.units.
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Ex.6: Find the area under the curve xy sin from 0x to 2x

Soln.: Fig shows the graph xy sin
The are from 0 to  lies in the 1st quadrant and area from  to 2 is below the axis and it is in

the thIV quadrant.

A 


0

.2 dxy 


0

.sin2 dxx

 0cos2 x ….As  ba
b

a

dxx cos.sin 

Ex.7: Find the area bounded by curve xxy sin21 3  , the x-axis and ordinates 0x , x
Soln.:

Required area 





x

x

dxy

0

.  





x

x

dxxx

0

3 sin21

  
 

0 0

3

0

sin2 xdxdxxdx
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Ex.8: Find the area between the parabola 24 xxy  and the x-axis

Soln.:   The equation is 24 xxy 
When 0y 0x

When 0y 04 2  xx

  04  xx
 0x or 4x

A 
4

0

.dxy   
4

0

2 .4 dxxx

Ex.9: Find the area enclosed by curve 24 xy  and the x-axis

Soln.:   The equation of curve is 24 xxy 
When 0y

240 x

 42 x
 2x

 The point of inter –section of parabola with x-axis is  0,2 and  0,2

 A 



2

2

.dxy  



2

2

24 dxx

As  xf = 24 x is an even function

=   
2

0

242 dxx …    











 



a

a

a

dxxfdxxf
0

2
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Ex.10: Find the area enclosed between the curve 223 xxy  and the x-axis
Soln.:   Given equation of curve

223 xxy 

x 0 1 2 3
y -2 0 0 -2

Area  ydx   
2

1

223 dxxx

2

1

32

3
2

2
3 












x
x

x

           


























3
1

121
2
3

3
2

222
2
3 3

2
3

2

3
1

2
2
3

3
8

44
2
3


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Ex.11: Find the area of the loop of the curve  xxy  122

Soln.:

Given equation of curve is  xxy  122

Putting 0y in above equation of the curve

  xx  10 2

 02 x or   01  x
 0x or 1x

 Points where the loop cuts x-axis  0,0 and  0,1

 A 
1

0

.dxy  
1

0

1 dxxx

  xxy  122 taking square root on both sides dxxxy  1

    
1

0

111 dxxx …    











 

a a

dxxafdxxf
0 0

  
1

0

111 dxxx

  
1

0

111 dxxx

Ex.12: Find the area of the circle 2522  yx using integration.

Soln.: Given circle 2522  yx , is with centre  0,0 and radius 5.
22 25 xy 

Now taking square root on both sides
225 xy 

Required area = 4 x area in 1st quadrant
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Required area 





5

0

.4
x

x

dxy  
5

1

2254 dxx

 
5

1

2254 dxx

By using formula

 
d

c

dxxa 22 =

d

c
a

xa
xa

x


















 1

2
22 sin

22

=

5

0

1
2

22

5
sin

2
5

5
2

4

















  x

x
x …..  5a

=


































 

5
0

sin
2

5
05

2
0

5
5

sin
2

5
55

2
5

4 1
2

221
2

22

=   



   01sin

2
25

04 1 = 





2
.

2
25

4
 ….  

2
1sin 1 


= 25 sq.units

Ex.13: Find the area of the circle 1622  yx using integration.



Marathwada Mitra Mandal’s Polytechnic.

Page 11 of 40 By Dube M.G.

Soln.: Given circle 1622  yx , is with centre  0,0 and radius 5.

22 16 xy 
Now taking square root on both sides

216 xy 
Required area = 4 x area in 1st quadrant

Required area 





4

0

.4
x

x

dxy  
4

1

2164 dxx

 
4

1

2244 dxx

By using formula

 
d

c

dxxa 22 =

d

c
a

xa
xa

x


















 2

2
22 sin

22
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Ex.14: Find the area of ellipse 1
2

2

2

2


b

y

a

x
by using integration method.

Soln.: Given curve is 1
2

2

2

2


b

y

a

x
, curve is symmemical abount both the axis.

Required Area 
a

ydx

0

4

Here 1
2

2

2

2


b

y

a

x

Now
2

2

2

2
1

a

x

b

y
















2

2
22 1

a

x
by


2

2
1

a

x
by 

 Area 



a

a

xa
b

0
2

22
4
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Home work

Ex.15: Find the area of ellipse 1
1625

22


yx
by using integration method.
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2.Area between Two curves
Let  xpy  and  xqy  be the two curvea. As shown in fig.

The area between two curves  xpy  and  xqy  is given as,

A     21 AAdxxqdxxp
b

a

b

a

 

     
b

a

dxxqxp

Ex.16: Find the area between 2xy  and the line xy 

Soln.: The given curve 2xy  , is parabola opeing upward with vertex at origin  0,0 .
The line xy  is passing through origin having slope =1
Two curves intersect

2xy  and xy 

Now, put 2xy  in xy 

 2x = 02  xxx
   01 xx  0x ,
 0y , 1y

1x
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 Curves intersect at the origin and the point  1,1

Required area 21 AA   
1

0

2
1

0

1

0
2

1

0
1 dxxxdxdxydxy

1

0

31

0

2

32 






















xx

3
1

2
1


6

1
 sq.units.
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Ex.17: Find the area enclosed by xy 82  and the line 2x

Soln.: The required area is bounded by parabola xy 82  and the line 2x
(Parallel to y-axis) as shown in fig.

Line 2x intersect parabola xy 82  (Symmetric about x-axis)

To find the points of intersection put 2x in xy 82 

 2y = 416  y

 Points of intersection are  4,2  4,2 
 Required area = 2 x area above x-axis







2

0

.2
x

x

dxy  
2

0

21
2

0

8282 xdxx

 028
3
2

.2
23

82 23
23















x

  8.8
3
4

28
3
4 213 

8
3
4

64
3
4



3
32
 sq.units

Ex.18: Find the area bounded by the curve xy 42  and yx 42 
Soln.: The required area is area enclosed between the two parabolas

xy 42  and yx 42  both intersecting at the points  0,0  4,4

Now xy 42 
Squaring both the sides

 224 4 xy 

yy 4424  ….  yx 42 

yy 34 4

0434  yy

  0433 yy

 4,0  yy for xyy 4,4 2 

 244 x
 4x

Therefore required area 21 AAA 

Where 1A area bounded by xy 42  and ordinate 4x
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2A area bounded by yx 42  and ordinate 4x

 Required area 









4

0

4

0

..
x

x

x

x

dxydxy 









4

0

2
21

4

0
4

4
x

x

x

x

dx
x

dxx
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Home work

Ex.19: Find the area enclosed by the two parabolas xy 2 and yx 2

Ex.20: Find the area bounded between two parabolas xy 92  and yx 92 
Soln.: The required area is the area enclosed between the two parabolas
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xy 92  and yx 92  both intersecting at the points  0,0  9,9
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Ex.20: Find the area between  the parabolas 32  xy and line 3 xy
Soln.: The required area is the area enclosed between the two parabolas

Given equation of curve
First we will find the ordinates of x and y as follows

x -2 -1 0 1 2
y 7 4 3 4 7

By using these ordinates plot the curve as shown in fig.
To find points of intersection of the curves

32  xy And 3 xy

Putting 3 xy in 32  xy

 33 2  xx

 02  xx ….   01 xx
 0x or 1x
When 0x , 330 y

 one point of intersection is  3,0
When 1x , 431 y

 other point of intersection is  4,1

 Required area      
1

0

2 33 dxxx

   dxxdxx  
1

0

1

0

2 33












    dxdxxdxxdx

1

0

1

0

2
1

0

1

0

33

   10
1

0

3
1
0

1

0

2
3

3
3

2
x

x
x

x




























       01301
3
1

01301
2
1 32 

3
3
1

3
2
1



6
1

6
23

3
1

2
1





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Home work

Ex.21: Find the area of the bounded by the curve xy 22  and 14  xy
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3.Mean and RMS values.

With the help of Definite Integral Average or Mean value of the function )(xfy  can be

calculated. Therefore If )(xfy  is integrable over the interval bxa  or  ba, , then the mean

value of the function )(xfy  over  ba, is given by the formula,

Y or Y mean or Y avg 






b

a

b

a

dxxf
ab

ydx
ab

)(
11

Note:-
1. Trignometric functions ‘sinx’ and ‘cosx’ are periodic with period 2 .

2. The period of ‘sinpx’ and ‘cospx’ is
P

T
2

 .

3. Therefore for period T of Function )(xfy  ,

Y or Y mean or Y avg  
b

a

b

a

dxxf
T

ydx
T

)(
11

Examples1: Find the mean value of the function 24 xy  over  2,0 .
Solution:
Given: 24 xy  over  2,0 a=0, b=2

The mean value of the function )(xfy  over  ba, is given by,

Y mean 



b

a

ydx
ab

1

 



2

0

24
02

1
dxx
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Examples2: Find the mean value of the function 32  xxy in the range over 10  x .
Solution:

Here:   32  xxxfy , a=0, b=1
The mean value of the function )(xfy  over the range 10  x is given by,

Y mean 



b

a

ydx
ab

1

 



1

0

2 3
01

1
dxxx

 
1

0

2 3dxxx

The integral is evaluated by the method of substitution.

Taking tx  32  dtxdx 2 or
2

dt
dxx 

When 0x , 330 t
When 1x , 431 t
Then, the above integral  1 becomes,

Y mean
2

1
4

3

dt
t

ab



 



Marathwada Mitra Mandal’s Polytechnic.

Page 24 of 40 By Dube M.G.

Examples3: Find the mean value of the function 342  xxy between the points where
it cut x-axis.
Solution:

The Curve 342  xxy cuts the x-axis in the points where 0y .putting 0y

in 342  xxy we get,

0342  xx
Factorizing, we have, 0)1)(3(  xx

 3x or 1x .
 Two points on x-axis are: (1,0) and (3,0).

The mean value of  xfy  over the range 31  x is:

Then, the above integral  1 becomes,

Y mean dxy
ab

b

a

.
1


 dxxx .34
13

1
3

1

2 















 

3

1

3

1

3

1

2 3..4.
2

1
dxdxxdxx

Examples4: Find the mean value of the tI 100sin10 over a complete period.
Solution:
Given the function as tI 100sin10
Comparing with ptsin , we have 100p
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 Period of the function,
50

1

100

22





P
T

Then, the mean value of the function  xfy  having period T is given by,

Y mean dtI
T

T

.
1

0


 dtt .100sin.10

50

1
1

501

0
 

Remark – The mean value of trigonometric functions over a complete period is zero.

Homework.

Examples5: An alternating current is given by ti 100sin20 . Find the mean value of ‘ 2i ’
over a complete period.
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Examples6: The instantaneous value of  an alternating current in amperes is given by

tti  3sinsin20  . Find the mean value of the current over the range 0i to


i .
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ROOT MEAN SQUARE (R.M.S.) VALUE:
The R.M.S. value of the function )(xfy  over  ba, is given by the formula,

Y smr ... 



b

a

dxy
ab

21

Note:-
1) The R.M.S. value is also called the effective value. Therefore effsmr YY ...

2) The R.M.S. value is generally applied only to periodic functions.
3) The R.M.S. value of any sinusoidal waveform taken over an interval equal to one period

is
2

1
times amplitude of the waveform.

4) Mean values and R.M.S. values are very Useful in calculating current, e.m.f……etc.
Example1: Find the R.M.S. value of the function 2)( xxf  over the interval .31  x
Solution:
Given, 2)( xxfy  and interval .31  x a=1, b=3.

The R.M.S. value of the function )(xfy  over  ba, is given by the formula,

Y smr ... 



b

a

dxy
ab

21 …….(1)

Where   
3

1

3

1

222 dxxdxyI

dxx
3

1

4

3

1

5

5 








x

5

242


Therefore , from (1) we have:
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Y smr ...
5

242

13

1



 = 4.92

Example 2: Find the R.M.S. value of the function wtwttf cossin)(  over  1,0
Solution:
Given, wtwttfy cossin)(  over  1,0 a=0, b=1.

Then, Y smr ... 



b

a

dty
ab

21

Where    
b

a

dtwtwtdtyI
1

0

22 cossin

=   
1

0

22 coscos.sin2sin dtwtwtwtwt

Note that 1cossin 22  wtwt and )2sin(cos.sin2 wtwtwt 

 I=   
1

0

2sin1 dtwt

Example 3: Find the R.M.S. value of the function tI 2sin3 over a complete cycle.
Solution:
Given : tI 2sin3 over a complete cycle

 Period of I is
P

T
2

 where p=2

Comparing t2sin with ptsin .

 



2

2
T
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Examples4: Find R.M.S. value of an alternating current ti 200sin5 .
Solution:
Given ti 200sin5
Comparing t200sin with tsin , t200sin

 Period of the function,
100

1

200

22





P
T

Then 2
... smri dti

T

T

.
1

0

2

….Note that we are taking square of ... smri to avoid root sign.
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  dtt .200sin5

100

1
1

1001

0

2 

Examples5: An alternating current is given by tai sin . Find the R.M.S value of the
current over a half wave.
Solution:
Given tai sin over a half wave
 The range of the function is 0t to i (half of 2 )
 0a to b
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HW.
Examples6: Find R.M.S. value of the function xbay cos over the interval  ,0 .
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4.Volume of solid revolution:-

Consider  xfy  be a continuous function defied on the interval  ba, . Fig a.

Then, the volume of the solid obtained by revolving the area under  xfy  from ax  to
bx  with x-axis abount x-axis is given by the formula

dxyV
b

a

.2  =    dxxf
b

a

.2

Similarly, the volume of the solid generated by revolving the area bounded by the curve
 ygx  , y-axis and lines cy  , dy  abount y-axis is given by the formula:

dyxV
dy

cy

.2




  =    dyyg
d

c

.2 Refer Fig.

Note:
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1. If a rectangle is revolved about one of its sides, we obtain a right circular cylinder as the
solid of revolution.

2. If a right-angled triangle is revolved about one of its legs, we obtain a right circular cone
as the solid of revolution.

3. If a semi-circle is revolved about its diameter, we obtain a sphere of the same radius as
the solid of revolution.

Examples1: Find the volume of right circular cone generated by revolving the line xy
4

3


about x-axis between the ordinates 0x to 4x
Solution:
The problem is represented diagrammatically as shown in fig.

When the line xy
4

3
 is revolved about x-axis between the ordinates 0x to 4x , the volume

of solid cone so generated is given by,

dxyV .
4

0

2 

dxx .
4

3
4

0

2

 





 

dxx .
16

9
4

0

2


=
316

9 3x

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 04
16

3 3 


= 64
16

3




43   = 12 cubic units.

Examples2: Find the volume of solid obtained by revolving about x-axis the plane area

bounded by the curve xy 3sin2 , x-axis and ordinates 0x to
3


x

Solution:
volume of solid of revolution is given by,

dxyV
b

a

.2 

  dxx .3sin2
3

0

2




Examples3: Find the volume generated by revolving semi-circle abount its bounding
diameter
OR
Find the volime of a sphere of radius r using integration.
Solution:
Consider a circle with centre at origin, that is, O  0.0 and radius r, as shown in fig.
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The equation of circle with centre at origin and radius r, is
222 ryx  , 322 xry 

The area of the semi-circle bounded by its diameter, that is, the area under  xfy  from
rx  to rx  with x-axis is when revolved about x-axis, a solid so obtained is a sphere of the

same radius  rei .. . Its volume is given by,

dxyV
r

r

.2


 

 dxxr
r

r

.22


  ….. From (1), 322 xry 

 dxxr
r

.2
0

22   …..   22 xrxf  is even

By property of definite integral dxdx
aa

a
 

 0

....2......












 

rr

dxxdxr
0

2

0

22














rr x
xr

0

3

0

2

3
.2

   



  0

3

1
0.2 32 rrr














3
2

3
3 r

r










 


3

3
2

33 rr


3

2
.2

3r

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3

3

4
r Cubic units.

Examples4: Find the volume of the solid generated by revolving the ellipse 1
49

22


yx

about the x-axis.
Solution:

The equation of the ellipse 1
49

22


yx

Re-writing for 2y , we get

1
9

9

9
1

4

222





xxy
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Examples5: Find the volume obtained by revolving the area under the curve

3649 22  yx in the interval from 2x to 4x about x-axis.
Solution:

The equation of the curve is 3649 22  yx (which is a hyperbola)

3649 22  yx or  4
4

9 22  xy

Examples6: Find the formula for the volume of a right circular cone of height ‘h’ and base
radius ‘r’ by using integration.
Solution:
In fig.
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For two similar triangles their corresponding sides are in production.


h

r

x

y


 x
h

r
y 

Now, the volume of right circular cone is given by

dxyV
h

.
0

2 

Examples7: Find the volume of the solid obtained by revoliving the region bounded by the

curve xy  and 2xy  about x-axis.
Solution:

The point of intersection of the curves xy  and 2xy  are obtained equating (for y)them.

 2xx   02  xx    01 xx  0x or 1x

When 0x or 0y one point of intersection is  0,0

When 1x or 1y one point of intersection is  1,1
The area of revolution to get solid is as shown in fig.
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Where xy 1  22
1 xy 

2
2 xy   42

2 xy 
The required volume of the solid obtained by revolving the shaded area is given by,

 dxyyV .
1

0

2
2

2
1  

Examples8: The loop of the curve  22 1 xxy is rotated about the x-axis. Find the
volume of the solid  so generated.
Solution:

The graph of the curve  22 1 xxy is as shown in the fig.
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The graph intersects x-axis in the point where 0y

  210  xx  0x or 1x

Point of intersection are  0,0 and  0,1
The required volume of the solid generated by revolving the shaded area about x-axis is given
by,

dxyV .
1

0

2 

  dxxx .1
1

0

2  


